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Abstract—The mode I crack problem for two dissimilar infinite strips bonded through a functionally
graded interfacial zone is investigated within the framework of plane elasticity. The graded interfacial
zone is treated as a nonhomogeneous continuum, having the continuously varying elastic modulus
between the dissimilar homogeneous strips. A crack is assumed to be embedded in one of the strips
perpendicular to the nominal interface. With the aid of the stiffness matrix approach, a set of
homogeneous conditions relevant to the proposed crack problem is readily satisfied. Subsequent
application of the mixed conditions on the cracked plane then leads to a singular integral equation
of the first kind which is solved numerically. In consequence, the variations of stress intensity factors
are provided as functions of geometric and material parameters of the bonded structure. The effect
of the material nonhomogeneity in the interfacial zone is further addressed by measuring the degree
of correspondence with the results that are obtained based on the use of the homogenized interfacial
elastic property. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

Over the past decades, a vast amount of research has been directed toward finding the
solutions to crack problems for bonded materials, motivated by the potential technological
advances that can be achieved by utilizing such multiphase media in many engineering
situations. The classical solutions to this category of mixed boundary values problems can
be largely attributed to England (1965) and Rice and Sih (1965) for the case of a crack
located along the interface between bonded dissimilar materials, and to Zak and Williams
(1963), Cook and Erdogan (1972), and Gupta (1973) when the crack is located per-
pendicular to the bimaterial interface. A common feature of these previous investigations
is the assumption of the discrete nature of piecewise homogeneous structures with ideal
interfaces, across which the elastic moduli are discontinuous. Because of such a drawback
in the interface modeling, the pathological aspects of the oscillatory or the nonsquare-root
singularity were exhibited, respectively, depending upon whether the crack-tip lies along or
terminates at the interface.

Somewhat later, a suggestion was made by Atkinson (1977) as to how the ideal
interface model that has been in use can be changed in order to remove the above unusual
inconsistencies present in the analysis of crack problems. A nonhomogeneous interlayer
was introduced at the location of the interface between the two different elastic media in
which the shear modulus varies continuously. As a result, it was shown that the standard
square-root type crack-tip singularity is maintained for both the crack geometries provided
the spatial variation of the elastic modulus is continuous near and at the crack tips, despite
the discontinuity in the derivative of the modulus.

It is worthwhile to mention at this point that the high resolution line scans by the
electron microprobe indicated, in most diffusion bonded materials, the formation of a
transitional phase with steeply varying physical and chemical properties between the two
dinstinctively dissimilar substrates (Wagner et al., 1995). Furthermore, in the diffusion
bonded materials, the interfacial region is deliberately introduced and graded with the aim
of producing a gradual variation of mechanical properties and thus minimizing the apparent
property mismatch between the substrates (Yang and Shih, 1994). Such an idea of tailoring
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is intended for reducing the stress concentration, residual stresses and for improving the
interfacial bonding strength and toughness as well, thereby alleviating the susceptibility of
the bonded structures to cracking and debonding.

Recently, the solutions to related crack problems involving such graded properties
were obtained by Delale and Erdogan (1988a) for the specific case of a crack in the
nonhomogeneous interlayer bounded by dissimilar homogeneous half-planes, and also by
Delale and Erdogan (1988b) for a crack along the interface between homogeneous and
nonhomogeneous half-planes. Similar problems of an antiplane shear counterpart were
considered by Erdogan and Ozturk (1992) and Ozturk and Erdogan (1993). For a crack
perpendicular to the interface between two bonded nonhomogeneous media, the singular
behavior of the antiplane shear stress field was examined by Erdogan (1985) and Schovanec
and Walton (1988) and by Gao and Kuang (1992) under the in-plane loading. The plane
strain problems of a cracked homogeneous half-plane bonded to a nonhomogeneous half-
plane are due to Erdogan et al. (1991a) and Martin (1992). Considered by Kaw er al. (1992)
and Bechel and Kaw (1994) are the symmetric problems of a cracked strip bonded to
dissimilar materials through nonhomogeneous interfacial layers. Furthermore, Erdogan ez
al. (1991b) solved the mode III crack problem in bonded homogeneous half-planes with a
nonhomogeneous interfacial zone. Consistent with the findings by Atkinson (1977), these
contributions confirmed the square-root behavior of the crack-tip stress singularity that is
unaffected by the existence of material nonhomogeneity.

Although the numerous investigations stated in the foregoing have resolved various
issues and provided insightful results for the crack problems entailing material non-
homogeneities, most of these studies in this class appear to have been concerned with
relatively simple cases of unbounded extent. The fundamental question then naturally arises
as the crack-tip interaction with neighboring boundaries in such bonded media as having
finite geometries, accounting for the free boundary as well as size effects. In this regard, the
present paper focuses on the analysis of a plane elasticity problem of bonded dissimilar
homogeneous strips with an internal crack perpendicular to the interface. A functionally
graded interfacial region is assumed to exist between the two strips as a distinct transitional
phase, with the corresponding nonhomogeneous elastic modulus varying continuously
across its thickness in the exponential form.

As a viable and systematic method of formulating the proposed crack problem, the
stiffiness matrix approach is utilized circumventing the complicated and lengthy algebraic
procedure involved in the analytical treatment of a layered structure. The readers are
referred to papers by Kausel and Seale (1987), Choi and Thangjitham (1991, 1993, 1994),
Wang and Rajapakse (1994), and Urquhart and Pindera (1994) for previous applications
of this matrix approach to different types of boundary value problems. In consequence, an
integral equation of the first kind with a Cauchy-type singular kernel is readily derived and
solved numerically. To characterize the local mode of singular crack-tip response, the values
of stress intensity factors are obtained illustrating the influence of geometric and material
parameters of the bonded strips. Specifically, discussions are made with respect to the
effects of the crack location and size and the strip thicknesses, in conjunction with the
material nonhomogeneity in the graded interfacial zone.

2. PROBLEM STATEMENT AND BASIC EQUATIONS

The problem configuration to be investigated in this paper is illustrated in Fig. 1.
As shown, an interfacial zone exists between the two dissimilar homogeneous strips to
characterize the continuous transition of elastic moduli across the bimaterial interface. Such
a functionally graded interfacial zone is treated as a nonhomogencous elastic continuum of
finite thickness. This bonded structure is then comprised of three infinite strips which are
distinguished in order from the left-hand side, with their thicknesses and elastic moduli
being 4, and E,, k=1,2, 3, respectively. An internal crack of length 2¢ = b—a is assumed
to be located in the homogeneous strip 3 perpendicular to the nominal interface with the
adjacent nonhomogeneous strip where @ = 0 and b < h;. A uniform tensile strain g, is
applied away from and normal to the plane of the crack.
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Fig. 1. Schematic representation of bonded dissimilar strips with a crack perpendicular to the
functionally graded nonhomogeneous interface.

For the nonhomogeneous strip, its elastic modulus is assumed to follow an exponential
variation as in the work by Erdogan er al. (1991a)

E,(x) = E, e (1)

where the nonhomogeneity parameter f3 is to be specified via the continuous transition of
the elastic moduli through the entire width of the bonded strips. On the other hand, an
assumption of the constant Poisson’s ratios is made such that v = v, = constant, k = 1,2, 3,
based on the previous indication that neglecting the possible special variation of the
Poisson’s ratios within a practical range is not a very restrictive assumption (Delale and
Erdogan, 1983). As will be shown, the above assumptions regarding the interfacial proper-
ties are made largely from the analytical expediency as well as physical reasoning, leading
to tractable solutions.
As a result, the governing equilibrium equations with eqn (1) can be expressed as

V7 . 2 821/(]( n 021;1‘ " ﬂ (1 n (‘3“/\. +(3 )ﬁl)k O (2 )
_u> A -y — I — a
Tr—1lae T axdy) k=1 2 ox * cy
R 2 [&Fu Py du, O,
Vi +—— - - =0, k=123 2b
vt K1<8x6y+ ay2>+ﬂ<0y +o =00 k=12 (2b)

where u.(x.y) and v, (x, ), Kk = 1,2, 3, are the displacement components in the x- and y-
directions, respectively, k = (3—4v) for plane strain and k = (3—v)/(1 + v) for plane stress,
f = 0 for the homogeneous strips, i.e., k = 1, 3, and with reference to the local coordinates
(x,¥) =(x1,»), k = 1,2,3, the value of f8 is thus obtained as

1 E;

Upon taking the geometric and loading symmetry with respect to x-axis into account,
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it is sufficient to consider only the upper half of the medium y = 0. The conditions of
traction-free boundaries of the bonded strips and the continuity across the nominal inter-
faces are then expressed as

- - + _0- ,
Ol = 0’ Tl,\y = 0, Taxx = 0, T}fv}‘ - O’ 0 < Y < % (4)

+ - + o g + - + - . _ ,
Uy = Uy Uk = UVkp1s Opxx = Oy oo Thay — Tkt Dxy » k=12 0<y<w (5)

where the superscript —/+ refers to the left-/right-hand surfaces of the constituent strips.
In addition, the following condition is to be met

T (5 0) =05 0<x <h. k=123 (6)

together with a set of mixed conditions imposed on the location of the cracked plane as

0 (x,0) =0, 0<x,<h, k=12 (7a)
03(x5,0)=0; 0<xy;<a, b<xy,<h, (7b)
53)»}'(3(3-,0) =04(x3); a<x;<b (7¢)

where o4(x;) is an arbitrary function. It should be remarked that under the prescribed far-
field uniform strain loading, the superposition principle renders the equivalent crack surface
traction to be applied as a,(x;) = — Ese,/(1 —v?) for plane strain and o4(x;) = — Esg, for
plane stress.

By employing the Fourier integral transform, the governing eqns (2) are first solved
for the case of homogeneous strips with f = 0 and (x,y) =(x, ), kK = 1,3, to obtain the
general solutions of displacement components such that (Sneddon and Lowengrub, 1969).

2 (> K K
u(x,y) = — ;[J- [(Ak, +xBy — ;Bkz) sinh sx+ (A“ +xB, — ;Bkl )cosh sx} cos sy ds

0

1 (> [1—xk .
. y —Isly--isx o
+ . JX< 20 +y>er ds (8a)

8

2 £
v (x,p) = - J [(Ag; +xBy ) coshsx+ (A, + xB,,) sinh sx] sin sy ds
4]

s (] |
'J S( +K+y>er""-""“‘ds; k1,3 (8b)

2w s\ 2ls|

and the general solutions of stress components are obtained as

4, [~ 1+
Oree(X,¥) = — %J {|:S(Ak1 +xB)— (—E*K>Bk2:1005h X
‘

0

I+x . i [ .
+ [S(A“ +xB) — (——Z-E)Bk. J sinh sx} cossyds— #:J <sy— ﬁ)Hk e v dy  (9a)

4u, (= 3—«k
Gk).v(x, y) = "gij {':S(A/‘.] +ka1 ) + (T)Bkz:ICOSh sX
0

3—k [ [ .
+ I:S(Akz +xB;)+ <2K>Bk1 } sinh sx} cossyds+ M—UJ <sy+ ﬁ)Hk e P ds  (9b)
7

— o0
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4 x 1—
T (X, ¥) = T'l;kj {|:S(Ak2 +xB) + ( 5 K)B,d:lcosh SX -+ |:S(Ak] +xB1)

0

1—x : '
+ (2,\>BI\2} sinh sx} sinsy ds— f;kj IslyHee " ds: k=1,3 (9

where y, = E,/2(1 +v) is the shear modulus, s is the transform variable, and A,(s), By (s),
H.(s), k=1,3,j=1,2, are arbitrary unknowns to be evaluated. It is noted that H,(s) =0
for the uncracked strip (kK = 1), while Hi(s) for the strip with a crack (k= 3) is to be
determined.

For the nonhomogeneous strip with f§ 5 0 in eqn (3) and (x, y) = (x,, ), the general
solutions of corresponding displacement and stress components are obtained as (Erdogan
etal., 1991a)

2 x4
U (x,y) = ;J m,F;e" cossyds (10a)
0o Jj=1
2 « 4
vy(x,y) = ;J F e""sinsyds (10b)
0 Jj=1
2p, e [ 3
026 0) = Y [ )mn, +sB—WIF, € cos sy ds (10¢)
n(k—1) 1, = :
2# ) e/lv o 4
Gr(X, V) = Y [s(l+x)+ (3—K)mn,|F, " cos sy ds (10d)
N ik —1) o =1
2 . e,/5\ x4 .
Ty (¥, )) = un J Y (n;—sm))F, e" " sinsyds (10e)
o Jj=1

where p, = E\/2(14+v), F(s), j=1,....,4, are arbitrary unknowns, n(s), j=1,...,4, are
the roots of the following characteristic equation

(n2+ﬁn—s2)2+(?;’;>ﬁzsz =0 (I

from which it can be shown that
n, = —é(ﬁ+yc039)+(—~])’*'éysin&; j=12 (12a)
n; = —%([i—*,mos())%—(—-l)’“éysin(); j=23,4 (12b)

and my(s), j=1,..., 4, are given as

o (k=11 +pn) — (k+ 1)s>
T [2n,4 (k—1)fls ’

j=1....,4 (13

in which i = (—1)"? and 0(s) and y(s) are expressed as
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1. [ 4ps 3—x s . s L (3—r\]"
= v = dp1eps ()| . 14
0 ptan <ﬁ2+452 1+K>’ ! [(ﬂ AT+ 1667s l+x (19

It can be seen that the general solutions as given in eqns (8b), (9¢), (10b), and (10e)
satisfy the conditions in eqns (6) and (7a) identically. In addition, upon introducing an
auxiliary function which is defined in the form:

¢
$(x3) 28703()(3,0); as<x;<b (15)

X3

the expression for the unknown H(s) in egns (8) and (9) can be written as
2 [ _
Hy(9) =~ J d(r) e dr. (16)

To obtain the expressions for a total of remaining twelve arbitrary unknowns, 4,;, By,
k=1,3,j=12andF,j=1,....4 involved in the general solutions of elasticity equations,
a set of homogeneous boundary and interface conditions in eqns (4) and (5) can be directly
applied so that a system of linear equations can be established for these unknowns. As an
alternative and convenient approach to accomplishing this task, the method of stiffness
matrix formulation is employed circumventing the difficulties that may arise from the above
complicated and lengthy algebraic manipulation.

3. STIFFNESS MATRIX FORMULATION

As a first step in utilizing the stiffness matrix approach, the following quantities are
defined

(_lk = {L-IA Ek}’ 6']‘, = {O-_k.x.\’ fk*’.)’}; k= 1,2,3 (]7a,b)

where d,(x,.5) and &,(x,,s) are, respectively, vectors containing the displacements and
tractions of the constituting strips in the Fourier transformed domain (x,, s).

Subsequently, in terms of 4, B,, k = 1,3,j=1,2,and F,j = 1,...,4, the two vectors
containing the displacements d; (s) and tractions &; (s) evaluated at the left- (— ) and right-
hand side (+) surfaces of each strip can be expressed in matrix form. With the elimination
of the unknowns between these two separate matrix equations, the local stiffness matrix
equations relating the surface tractions to the corresponding displacements of strips 1 and
2 are constructed in the form as

|
e e = k=12 (18)

(19)

where K}, (s), k = 1,2,3, I,m = 1,2, are 2x2 submatrices of the 4 x4 symmetric local

stiffness matrices (see Appendix) which are functions of the Fourier transform variable, the
elastic constants, and the geometry of the strips.
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In addition, a vector {f, (s) £ (s)} which is of length four as in eqn (19) is expressed
as

K(132) g(j l ( h«:
‘2#31‘ (20)
h,

where the elements of a vector {g, (s) 8/ ()} = { g, 9.2 9u3 goe)} are given as

= L e prar (21a)
9a0 =y | (5 o) oma
B 1 rh K+1 ) s d (2]b)
a0 = | [ r)e e
1 (?[r—1
Gor(8) = — [—“ +(h3_"):| e (r)dr (21c)
k+1], s
[ K+ 1
- _ o —s(hy - r) .
Goa($) Tt [(/h r) 25 j|e ¢(r) dr (21d)

and those of a vector {h, (s) h)(s)} = {h, h,, k.5 B4} are written as

1 [*

h, (s) = . sre Y ¢(r)dr (22a)
1

h,-(s) = I (1—sr)e " ¢(r)dr (22b)
K a
1 b

hos(s) == | sths = e plrydr (22¢)
1 [*

hoa(s) = e [s(hs —r)—1] e 2 p(r) dr. (22d)

It can now be illustrated that the elements of stiffness matrices for the homogeneous
strips | and 3 are all real, while those for the nonhomogeneous strip are also real such that

ImKZ(s) = 0 (23)

together with the following asymptotic behavior as the Fourier variable s approaches
infinity :
1 K®: I=m k=123
lim | K225 :{ (24)
sow g 0; l#m, k=1,23
where K{f), k = 1,2,3, denote 2 x2 symmetric submatrices containing limiting nonzero
values.

After defining 8, ,(s) = d; (s) = di. (), kK = 1,2, as vectors for the common inter-
facial displacements between the adjacent strips and &,(s) = d; (s) and d,(s) = d (s), suc-
cessive applications of boundary and interface conditions in eqns (4) and (5) to the local
matrix equations in eqns (18) and (19) result in a system of global stiffness matrix equations
for the three-layer bonded structure to be assembled as
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K{)3, +K\% 8, =0 (25a)
K/ 8, + (K +K?2) 5, +KP3, =0 (25b)
K2 8,4+ (K3 +K3) 8, +KP o, =1 (25¢)
K& o, +KPY 8, =f. (25d)

The above system of algebraic equations is expressed in contracted notation as
Ko =1 (26)

where K(s) is a banded and symmetric global stiffness matrix of order § x 8 which is
numerically stable, 8(s) is a global vector for the interfacial displacements as the basic
unknown variables {3, 8, 8; 8,}, and f(s) is a vector containing the auxiliary function ¢ and
zero elements such that {0 0 f, f,}. These vectors are of eight units in length.

With the global interfacial displacement vector & obtained by solving the global matrix
equation (26), the required unknowns. 4,, B;,, k= 1,3,j=1,2,and F;,j=1,...,4,in the
general solutions of the current elasticity problem that satisfy the prescribed conditions in
eqns (4) and (5) can be expressed in terms of the local interfacial displacements §,,
k=1,...,4, in the straightforward manner. The auxiliary function then remains as the
only unknown that should be determined from the mixed conditions on the crack surface
in eqn (7¢).

4. SINGULAR INTEGRAL EQUATION

In conjunction with the expression given in eqn (16), the traction component a;,,
acting on the cracked plane y = 0 can be written as

(x.0) = 2usi b )d > ( =)
Oan (6. 0) = — =770 () dr| sgn(s)e s

a — o

4 = 3-
+‘uiJ‘ {l:s(/l;] +XB31)+<K)B:),2JCOShSX
T, 2
3—k .
+|s5(A5:+xBs,) + N B;, |sinhsx>ds; 0<x=x;<h, (27)

where sgn( ) denotes the signum function.

As outlined in the foregoing, the expressions for A4, and B,, j = 1,2, are obtained
from the relationship between these unknowns and the local interfacial displacements
0, = d; and 3, = di such that

4
As(s) = Z (LpGok —2psMphy); j=1,2 (28a)
K21
4
By(s) = Z (L(j—Z)kgak_2ﬂ3M(/+2)kh(»k); j=12 (28b)
k=1
where L, (s) and M, (s). j,k = 1,...,4, are written as
4 4
L/k(s) = % +/Z %l My (s) = Z %l vy Lk=1,2,3,4 (29
=1 =1

in which I'y(s), .,k = 1,...,4, are expressed as
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4
Iyls) = Z F(/+4)(]'+4)K§-/§)3 Lk=1,2734 (30
=1

the function Fy(s), L,k =1,...,8. denotes the clements of the global flexibility matrix
F(s) = K '(s), and the expressions for ay(s), j,k = 1,..., 4, are given in the Appendix.

The unknown auxiliary function ¢ in eqn (27) is to be evaluated by applying the crack
surface condition in eqn (7¢), which has not yet been satisfied. As a result, upon substituting
eqn (28) into eqn (27) and recalling the Fourier representation of a generalized function
(Friedman, 1969)

* . 2i
J sgn(s) e ds = 71 (31

—

a singular integral equation of the first kind is derived as

CI ~ w(l+k) N i
ﬁ [: +p(x, r)}ﬁ(r) dr=—p — 0,9 a<x<b (32)

1

where the kernel p(x, r) is expressed as
plx,r) = J A(s, x.r) ds (33)
0

in which the integrand A(s, x, r) is written as

A(s,x,r)z[(%l—l—r)fl(x s)+<1 )f (x, s)}
+ [(KT_S] + 1 —r>f3 (x,8)+ <h3 —r— L}F)ﬁ (X,s)} g

—2ps[srg, (x,8) + (L —sr)g,(x.8)] e
—2p3[s(hs —r)gs(x,8) — (1 —shy +sr)ga(x, )] e "7 (34)

together with the expressions for fi(x, s) and gi(x,s), /= 1,...,4 defined as

f,-(x,s)} {Ll, {Lz} . L; 3—
‘ = scosh sx+ "Lesinhsx+ < 7 3 sxcoshsx+
{gj(x,s) MU MZ/' M}j

L, 3—«
+{M44/}<srsmhsx+ 2Kcoshsx>; j=1,2,3.4. (3%

K
sinh sx>

It should be mentioned that when the crack is within the homogenecous strip such that
a > 0 and b < hs, the integrand in eqn (34) possesses the following asymptotic behavior for
large values of s

anE Als,x,r)=0; a<s(x,r)<bh (36)

so that the function p(x, r) can be referred to as a Fredholm kernel bounded for all values
of x and r in their closed domains of definition [a #] and only a simple Cauchy-type kernel
1/(r—x) in eqn (32) contributes to the singular behavior of the solution to the integral
equation (Muskhelishvili, 1953).
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For the crack tip intersecting the nominal interface with the nonhomogeneous strip as
a = 0 and b < ks, there exist logarithmic singularities in the kernel p(x,r) in eqn (33) as x
and » approach zero simultaneously. As shown by Erdogan et al. (1991a,b)}, the logarithmic
singularities are, however, square integrable that do not have any influence on the crack-
tip singularity. Such additional unbounded terms can thus be treated as a Fredholm kernel,
and the singular kernel in this limiting case is yet attributed to the same Cauchy type.

Because of the presence of the dominant Cauchy-type kernel in eqn (32) as the sole
contribution to the singular nature of the auxiliary function ¢, the crack-tip behavior is
characterized by the standard square-root singularity for both the crack-tip locations a > 0
and a = 0. In the normalized intervals given as

b—a b+a b—a b+a B
2= T —1<en < (37)

preserving the correct nature of the problem singularity, the solution to the integral equation
can therefore be of the form (Muskhelishvili, 1953)

H
o) =0 = 0 < (38)

5

Vi=n
where H(#) is an unknown bounded function and nonzero at y = +1 as

o

Hmn) = ) o.T,(m; Il <1 (39)

n=0

in which ¢,, n = 0, are the constants to be evaluated, T, is the Chebyshev polynomial of the
first kind, and 1/(1 —%°)'? is the corresponding weight function. It can be shown that
provided ¢, = 0, the above series expansion and the orthogonality of 7, satisfy the single-
valuedness condition expressed as

J o) dy = 0. (40)

Upon substituting eqns (37)—(39) into eqn (32), truncating the series at » = N, and
using the integral formulas (Gradshteyn and Ryzhik, 1980)

lj‘ T.ondny
1= (=9

I

where U, is the Chebyshev polynomial of the second kind, the singularity of the integral
equation is removed such that

La|s @ | PELD T e @)
n=1 1 \/ —]7'

g Auy

where p, (S, n) =(b—a)p(x,r)/2.

To recast the above functional equations into a solvable form for ¢,, 1 <n < N, the
collocation technique is applied. The roots of T, are then selected as a set of collocation
points which are concentrated near the end singular points £ = + 1
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o (2i—1)

T(&E) =0, ¢ = ;
N(gz) k] QI Cos 6:3 61 2 N

i=1,2,....N (43)

and a system of N linear algebraic equations for ¢,, 1 < »n < N, is obtained by substituting
the collocation points & = &, 1 < i< N, into egn (42).

As noted, the number of terms N in eqn (39) or (42) is equal to that of collocation
points &; in eqn (43). The number N must be large enough so that the resulting solution is
within a required degree of accuracy, with the integrals in eqns (33) and (42) evaluated by
the Gauss—Legendre and Gauss—Chebyshev quadrature rules, respectively.

After the constants ¢, being evaluated, the left-hand side of the integral equation in
eqn (32) provides the expression for ¢;,,(¢,0) outside |£] > 1 as well as inside || < 1 the
crack. Thus, from eqns (32) and (37)-(39), the singular traction ahead of the crack-tip
|£] > 1 can be obtained as

1+ | T [ ! : J
. O3y 5? O - Cy = P + (Cf-v d
40 z_,( ) 7[”;1 J'\/lﬂz n—=¢é P«(&om) |dn

fl

~Ye, , +-Y ¢, ni oIl >1

Yoo [E-sen()/E 1" 1 ,Jl pE&mT, () o
=1 sgn(¢)/&* —1 iz J1-n?

(44)

where the second term in the right-hand side is a higher order nonsingular term.

As the local crack-tip parameter in linear elastic fracture mechanics, the stress intensity
factors are defined from the foregoing structure of the singular traction and can be evaluated
in terms of the solution to the integral equation:

) — 4u, (b—a ¥
= / —) X, = - _ —1 R - 2 P’
K, =1lim\/2(a—x) 65,,(x.0) ey 2 n;( Yie,; x<a (452)

4, fp—a
£ Y e x>b (45b)

K, = 1‘111;1 V2(x—b)as,(x,0) = — e 7 X

where K, and K, denote the mode [ stress intensity factors at the left- and right-hand side
crack tips, respectively.

To be mentioned now is that due to the continuity of elastic moduli through the
transitional interfacial zone, the cleavage stresses are also continuous at the nominal
interface between the homogeneous and nonhomogeneous strips such that o3 (») =
d3,,(¥), v = 0. As a result, the above definition of the stress intensity factors can be validated
for the limiting case of a = 0 as well.

5. RESULTS AND DISCUSSION

To obtain the numerical results, the bonded structure and the crack geometry are
specified as A,/h, = 1.0, hy/hy = 0.25, and 2¢/h; = 0.5, unless otherwise stated, and the
Poisson’s ratio is assumed as v = v, = 0.3, k = 1, 2, 3. In addition, the crack surface traction
in eqn (7c¢) is applied as 6,(x;) = —p, = — Es¢,/(1—v*) under the plane strain state. No
more than twenty terms in eqn (42) are then found to be necessary in obtaining the highly
accurate values of stress intensity factors, with K, = p,c'? as a normalizing factor.

In Figs 2a and 2b, the variations of normalized stress intensity factors K, and K, at
the left- and right-hand side crack-tips @ and b, respectively, are shown as a function of
crack location djc for different elastic moduli ratios E,/E,. Upon comparing these two
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Fig. 2. Variation of normalized stress intensity factors (a) K,/K, and (b) K,/K, as a function of
crack location d/c¢ for different elastic moduli ratios Ey/E; (K, = p,c"?, hjhy = 1.0, hy/h; = 0.25,
2¢/h; = 0.5).

figures, it 1s shown that the values of K, are more markedly affected by the ratios E;/F,
than those of K,. More specifically, Fig. 2a illustrates that the values of K, for E3/E, < 1
increase monotonically with d/c because of the diminishing infiuence exerted by the adjacent
stiffer materials on the crack tip. On the other hand, those for £;/E, > 1 attain their minima
at some points of djc before increasing further. At the other crack tip, the values of K, in
Fig. 2b increase moderately with d/c for all given ratios of E;/E, and then, as expected,
experience abrupt increases as the crack tip approaches the nearby free boundary. This is
indicative of the fact that the behavior of the right-hand side crack tip is mainly dominated
by the size of the uncracked ligament (4, —b), while that of the left-hand side crack tip is,
to a larger extent, controlled by the elastic moduli of adjacent uncracked strips.
Additionally plotted and compared in Figs 2a and 2b by circles are the normalized stress
intensity factors evaluated for the homogenized interface model based on the following
functionally averaged nonhomogeneous elastic modulus of the interfacial zone:

L™ E,  w
Epy=—| E,edx= Eh—(e/ ). (46)

hy 0 2
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Fig. 3. Effect of crack location d/c on normalized stress intensity factors (a) K,/K, and (b) K,/K, for
different crack size 2¢/h; and elastic moduli ratios Ei/E, (K, = p,c'2, hy/hy = 1.0, hy/hy = 0.25).

To be observed herein are the more pronounced deviations of the stress intensity factor
K, from the current nonhomogeneous interface model when the difference between elastic
moduli E, and E£; becomes greater and the crack advances toward the plane of the nominal
interface. Otherwise, an obvious but important fact which may be stated from Fig. 2a is
that the solutions to both interface models become close to each other and that the similar
results are obtained for the case of K, in Fig. 2b. The discrepancy between these two
solutions, however, appears to be more notable than the case of a crack located in a semi-
infinite substrate as most recently investigated by Choi (1996). It is now worthwhile to
mention that when the crack tip terminates at or intersects the ideal interface with the
homogenized interfacial zone with d/c = 1, the discrete nature of the elastic moduli renders
the nonsquare-root crack-tip singularity to be obtained (Cook and Erdogan, 1972). Hence,
such incompatible results corresponding to this ideal interface are not given.

The effects of crack locations are further presented in Figs 3a and 3b in conjunction
with different crack sizes 2¢/h, for E5/E, = 0.1 and 10. Of particular interest in these figures
are also the smooth gradients of K, and X, for a practical range of 3.0 < d/c < 7.0, especially
when 2c/h; = 0.2, prior to sharp increases and the lesser influence of E;/E, for the relatively
smaller crack size.

With the crack located directly beneath the nonhomogeneous interfacial zone such
that d/c = 1, Figs 4a and 4b next show the effects of the crack size 2¢/#; for various elastic
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Fig. 4. Variation of normalized stress intensity factors (a) K,/K, and (b) K,/K, as a function of crack
size 2¢/h, for different elastic moduli ratios E/E, (K, = p,c'% h/hy = 1.0, hy/hy = 0.25, dfc = 1.0).

moduli ratios E;/E,. A generic trend of monotonic increases of the normalized stress
intensity factors is thus illustrated as a function of 2¢/h;, except for slightly decreasing
behavior of K, for £/E, < 1.0 which is possibly due to the stiffening by the adjacent stiffer
strips. Another feature observed is that as 2¢/h; approaches zero, the normalized stress
intensity factors at both the crack tips tend to unity, implying that the tip behavior in an
unbounded bonded medium is negligibly affected by the presence of the nonhomogeneous
interfacial zone.

Figures 5a and 5b show that, for the crack location d/c = 1 and size 2¢/h; = 0.5, the
increase in the thickness of the uncracked strip by 4,/h; and the decrease in the moduli ratio
by E;/E, lead to a substantial reduction in the values of stress intensity factors at both the
crack tips. In other words, the crack-tip shielding and crack growth stabilization can be
achieved by increasing the rigidity or thickness of the uncracked tip.

The variations of normalized stress intensity factors K, and K, with the thickness of
the nonhomogeneous interfacial zone h,/h; are plotted in Figs 6a and 6b, respectively. It
should be pointed out that given the same relative crack size and location as in Figs 5a and
5b, the effect of increasing the thickness of the nonhomogeneous strip by A,/ is predicted
in a quite different manner depending on the values of the ratio E;/E,. It is illustrated in
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Fig. 5. Variation of normalized stress intensity factors (a) K/K, and (b) K,/K, as a function
of thickness of a homogeneous strip A, /A, for different elastic moduli ratios E/E, (K, = p,c'?,
hothy = 0.25, dic = 1.0, 2¢/hy = 0.5).

these figures that the spreadout of the rigidity of the nonhomogeneous interfacial zone by
increasing h,/h; results in a gradual increase in the magnitude of stress intensity factors for
E,/E, < 1, while the reverse behavior prevails for E;/E, > 1. Together with the results in Figs
5a and 5b, the aforementioned crack-tip response may provide an idea as to determining the
geometric and material conditions that would enhance the fail-safe capability of diffusion
bonded structures from the viewpoint of fracture mechanics.

6. CONCLUDING REMARKS

An analysis has been performed to investigate the crack-tip behavior in bonded strips
in the presence of a functionally graded, nonhomogeneous interfacial zone. Via the con-
tinuity of elastic moduli at the nominal interfaces, the standard order of square-root
singularity was retained for the case of the crack-tip that intersects the interface, and no
difficulties were thus imposed in properly applying the linear elastic fracture mechanics
concepts. As a consequence, the stress intensity factors were readily evaluated which were
shown to be strongly affected by various geometric parameters of the bonded media, in
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Fig. 6. Variation of normalized stress intensity factors (a) K,/K, and (b) K,/K, as a function qf
thickness of a nonhomogeneous strip h,/#; for different elastic moduli ratios Ey/E, (K, = p,¢'7?,
hjhy = 1.0, dic = 1.0, 2¢/hy = 0.5).

conjunction with the material nonhomogeneity in the interfacial zone. The results based on
the use of the homogenized interfacial elastic modulus were also presented as a function of
varying crack locations to measure the degree of correspondence with those of the current
nonhomogeneous interface model. On the basis of this study, it may be stated that the
analysis of the cracked bonded structure involving the nonhomogeneous interfacial zone
provides accurate information in examining the singular response at the crack-tip, par-
ticularly when the crack is very close to or terminates at the nominal interface.

REFERENCES

Atkinson, C. (1977). On stress singularities and interfaces in linear elastic fracture mechanics. /nt. J. Fract. 13,
807-820.

Bechel, V. T. and Kaw, A. K. (1994). Fracture mechanics of composites with nonhomogeneous interphases and
nondilute fiber volume fractions. Int. J. Solids Structures 31, 2053-2070.

Choi, H. J. (1996). An analysis of cracking in a layered medium with a functionally graded nonhomogeneous
interface. J. Appl. Mech. (In press).

Choi, H. J. and Thangjitham, S. (1991). Stress analysis of multilayered anisotropic elastic media. J. Appl. Mech.
58, 382-387.

Choi, H. J. and Thangjitham, S. (1993). Thermally induced interlaminar crack-tip singularities in laminated
anisotropic composites. Inf. J. Fract. 60, 327-347.



gBonded dissimilar strips 4117

Choi, H. J. and Thangjitham, S. (1994). The interlaminar crack-tip response in a fiber-reinforced composite
laminate. Int. J. Fract. 66, 121-138.

Cook, T. S. and Erdogan, F. (1972). Stresses in bonded materials with a crack perpendicular to the interface. /nt.
J. Engng Sci. 10, 677-697.

Delale, F. and Erdogan, F. (1983). The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50, 609-614.

Delale, F. and Erdogan, F. (19884). On the mechanical modeling of the interfacial region in bonded half-planes.
J. Appl. Mech. 55, 317-324.

Delale, F. and Erdogan, F. (1988b). Interface crack in a nonhomogeneous elastic medium. Inf. J. Engng Sci. 26,
559-568.

England, A. H. (1965). A crack between dissimilar media. J. Appl. Mech. 32, 400-402.

Erdogan, F. (1985). The crack problem for bonded nonhomogeneous materials under antiplane shear loading. J.
Appl. Mech. 52, 823-828.

Erdogan, F., Kaya. A. C. and Joseph, P. F. {1991a). The crack problem in bonded nonhomogeneous materials.
J. Appl. Mech. 58, 410-418.

Erdogan, F., Kaya, A. C. and Joseph, P. F. (1991b). The mode I1I crack problem in bonded materials with a
nonhomogeneous interfacial zone. J. Appl. Mech. 58, 419-427.

Erdogan, F. and Ozturk, M. (1992). Ditfusion problems in bonded nonhomogeneous materials with an interface
cut. Int. J. Engng Sci. 30, 1507-1523.

Friedman, B. (1969). Lectures on Application-Oriented Mathematics, Holden-Day, San Francisco.

Gao, X. and Kuang, Z.-B. (1992). Mode I fracture in two dissimilar functional nonhomogeneous planes. Engng
Fract. Mech. 42, 33-44.

Gradshteyn, I. S. and Ryzhik, 1. M. (1980). Table of Integrals, Series, and Products. Academic Press, New York.

Gupta, G. D. (1973). A layered composite with a broken laminate. Int. J. Solids Structures 9, 1141-1154.

Kausel, E. and Seale, S. H. (1987). Static loads in layered halfspaces. J. Appl. Mech. 54, 403—408.

Kaw, A. K., Selvarathinam. A. S. and Besterfield, G. H. (1992). Comparison of interphase models for a crack in
fiber reinforced composite. Theoret. Appl. Fract. Mech. 17, 133--147.

Martin, P. A. (1992). Tip behaviour for cracks in bonded inhomogeneous materials. J. Engng Math. 26, 467-480.

Muskhelishvili, N. 1. (1953). Singular Integral Equations. Noordhoff, Groningen, The Netherlands.

Ozturk, M. and Erdogan, F. (1993). Antiplane shear crack problem in bonded materials with a graded interfacial
zone. Int. J. Engng Sci. 31, 1641 -1657.

Rice, J. R. and Sih, G. C. (1965). Plane problems of cracks in dissimilar material. J. Appl. Mech. 32, 418-423.

Schovanec, L. and Walton, J. R. (1988). On the order of stress singularity for an antiplane shear crack at the
interface of two bonded inhomogeneous elastic materials. J. Appl. Mech. 55, 234-236.

Sneddon, 1. N. and Lowengrub, M. (1969). Crack Problems in the Classical Theory of Elasticity. John Wiley &
Sons, Inc., New York.

Urquhart, E. E. and Pindera, M .-J. (1994). Incipient separation between a frictionless flat punch and an anisotropic
multilayered half plane. /nt. J. Solids Structures 31, 2445-2461.

Wagner, T., Kirchheim, R. and Riihle, M. (1995). Chemical reactions at metal/ceramic interfaces during diffusion
bonding. 4cfa Metall. Mar. 43, 1053-1063.

Wang, Y. and Rajapakse, R. K. N. D. (1994). An exact stiffness method for elastodynamics of a layered
orthotropic half-plane. J. Appl. Mech. 61, 339-348.

Yang, W. and Shih, C. F. (1994). Fracture along an interlayer. /nt. J. Solids Structures 31, 985-1002.

Zak, A. R. and Williams, M. L. (1963). Crack point stress singularities at a bimaterial interface. J. Appl. Mech.
30, 142-143.

APPENDIX

The structure of the strip local stiffness matrices in eqns (18) and (19) is written as

K K KR KR
K | K || K1 KS RS KY
e e i It Bt k=1,2,3
K | Ke || KE KR K K
K KR 1KY K
and the functions 2,(s), j,k = 1....,4, in eqn (29) are expressed as
h?
A =0y =%y =0, %y =1, az\="Xs
K Koo Kkhy . K K .
oyy = — vy hy— Zsmh 2sh; |, Rar = Esmh shs, 0oy = A h; coshshy — ;smh shs
K . ., 1 K . K3 .
oAy = — Esmh'slg, "=y (h3 — ismh 2sh3>. D3y = ismhsh;,

] .
%y =*<h3 coshshxfEsinhsh])~ %y
A s

1 K K .
=2 (h;,+ ismh 2sh1>, Bay = — Esmhzsh3

1/ . hy . ) o
Dpz = — A (% sinh sh. + f5 coshsh;), gy = — %smh shy, A(s) = h3 — %smh‘sh;
s K



